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Over the course of this project, Karen and Rhea collaborated heavily on most
sections, although each person focused their efforts on different sections. Rhea
introduced the mathematical concepts, wrote the steady-state vector example,
and created the transition matrix used in the model, while Karen wrote the other
example and proved the key theorem. Both of them collaborated on researching
the topic, integrating sociological concepts, and analyzing the data to produce
and interpret our models.

Following peer reviews, we incorporated several suggestions. For example,
many students commented on the lack of examples surrounding steady-state vec-
tors, so we modified our examples to introduce this topic on a computational
level. We also cut one example out of our paper to eliminate observed redun-
dancies. Additionally, we changed some LaTeX formatting, such as including
boxes around theorems, to increase paper readability as per the comments. We
also increased the amount we expressed ideas through mathematical notation,
rather than simply through words.

Our meetings with our assigned project advisor, Caleb, were particularly
helpful. At our first meeting before the project draft deadline, we discussed with
him how the lack of data from Massachusetts hindered our ability to build a
cohesive Markov chain model, so we switched to Florida following his suggestion.

In our second meeting with Caleb to go over our draft, we discussed how
to more clearly present information in our paper (e.g. explicitly marking out
key definitions). He also gave us many helpful suggestions on how to go about
proving the uniqueness aspect of the proof we discuss in our paper.

With the help of our classmates and Caleb, we were able to produce this
final draft which we hope gives the reader a comprehensive understanding of
Markov chains and their particular application to predicting recidivism.

1



1 Introduction

1.1 Background

Sociology is the study of human behaviour within the context of social rela-
tionships, institutions, and systems. Through this project, we wanted to study
how linear algebra can be applied to one area of focus in sociology: the prison
system, specifically how to determine the chance of recidivism in a given popu-
lation. Recidivism refers to the percent chance that someone who committed
an offense will re-offend. In particular, we are interested in how mental health
can affect these recidivism rates.

In a survey of inmates conducted by the US Bureau of Justice Statistics, an
estimated 56% of state prisoners and 64% of jail inmates reported symptoms
of mental health disorders or had a recent history of mental health problems.
Repeated encounters with the criminal justice system are also more common
among people with a serious mental illness. Among inmates in prison or jail
who had a mental health problem, approximately 25% had served three or more
prior incarcerations, compared to around 20% among those without mental
health problems [7].

Given that the U.S. has the largest prison population in the world and its
prison system has been and continues to be the subject of controversy and
debate, we decided to study this issue through the quantitative lens offered
by linear algebra techniques. Overall, we hope our project can inform a greater
understanding of the importance of adequate and continued mental health treat-
ments for offenders, both incarcerated and released, and ultimately highlight an
area of focus for further policy evaluation on the state and federal level.

1.2 Introduction to Markov Chains

In order to study recidivism, Markov chains are used to model sequences of
events where the probability of some outcome occurring in a particular event is
dependent on the outcome that occurred in the event directly preceding it.

1.2.1 Important Definitions

Definition 1 Probability vectors are vectors of the form < t1, ..., tn > where
each element is non-negative and where t1 + ...+ tn = 1.

Definition 2 Stochastic matrices are n × n matrices with probability vec-
tors, each with n elements, as columns.

Definition 3 Given a series of probability vectors, x0, x1, x2... all in R
n, and

a stochastic n × n matrix P , the resultant Markov Chain is

x1 = Px0, x2 = Px1, · · ·

which can also be represented more generally as

xk+1 = Pxk
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for all k in the set of whole numbers.

Definition 4 A steady state vector q is a probability vector such that Aq = q,
i.e. an eigenvector of stochastic matrix A associated to the eigenvalue 1.

Definition 5 A regular stochastic matrix is a nonnegative stochastic matrix
such that all the entries of some power of the matrix are positive, i.e. for a
matrix P, there exists some power k ≥ 1 such that each entry of P k is nonzero.

1.2.2 Analyzing systems with Markov Chains

Each element in the probability vector represents the probability of each of
n possible outcomes occurring at the given point in the sequence of events.
Many times, the probability vectors are called state vectors as they show a
probabilistic distribution of states that a system could be in at a given point.
Markov chains can be useful to predict what will happen in the short term,
but they are especially useful at providing a mathematical framework to model
long-term trends in a wide range of fields.

Often when looking at distant state vectors, we see that they steadily ap-
proach a certain vector, known as the steady state or equilibrium vector for
the given stochastic matrix P . Once this vector has been reached, then mul-
tiplication by P still results in the same vector, so the probability of outcomes
occurring becomes constant from one state to the next.

1.3 Computational examples relating to Markov Chains

1.3.1 Example 1: Representing Population Movement1

Let M be a migration matrix representing population movement between Cam-
bridge and Boston.

Let’s say that 5% of the Cambridge population moves to Boston annually,
while 95% stays in Cambridge. Thus, the first column ofM , representing the ge-

ographic distribution next year of the current Cambridge population, is

[
0.95
0.05

]
.

On the other hand, let’s say 4% of the Boston population moves to Cambridge,

while 96% stays in Boston annually, so the second column of M is

[
0.04
0.96

]
.

Putting this together,

M =

[
0.95 0.04
0.05 0.96

]
That is, annually 5% of the Cambridge population moves to Boston, and 4%

of the Boston population moves to Cambridge. M is a stochastic matrix since
its columns are probability vectors.

1Adapted from Lay, Linear Algebra[8]
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In 2019, the population of Cambridge was 116,632 and the population of
Boston was 684,379 (US Census Bureau).

Let pop0 =

[
116, 632
683, 379

]
. To predict the populations of each city in 2020, we

would calculate M(pop0) to get:

pop1 =

[
138135.56
661875.44

]
1.3.2 Example 2. Steady State Vectors2

Let’s say that if you go to the gym on one day, then there’s a 90% chance that
you will go to the gym the next day. However, if you don’t go to the gym, then
there is only a 60% chance that you will go to the gym the next day due to lack
of motivation.

Thus,

P =

[
0.9 0.6
0.1 0.4

]

Assuming you go to the gym on the first day (day 0), let xn be the proba-
bility that you go to the gym on the nth day after that.

Then, x1 =

[
0.9 0.6
0.1 0.4

] [
1
0

]
=

[
0.9
0.1

]
and x2 =

[
0.9 0.6
0.1 0.4

]
x1 =

[
0.87
0.13

]
Continuing this process, we find that

x3 =

[
0.861
0.139

]
, x4 =

[
0.8583
0.1417

]
, x5 =

[
0.8575
0.1425

]
We can see that the values tend to be approaching the same values, and the

steady-state vector, denoted as xs, is the vector that is comprised of the values
being approached.

Recall that steady-state vectors make the following equation true:

xs = P ∗ xs

Thus, letting I be the 2× 2 identity matrix, xs − P ∗ xs = (I − P )xs = 0

Let us further define xs as being equal to

[
a
b

]
Thus, (I −P )xs =

([
1 0
0 1

]
−

[
0.9 0.6
0.1 0.4

])[
a
b

]
=

([
0.1 −0.1
−0.6 0.6

])[
a
b

]
= 0

2Adapted from Bloomington Tutors, bloomingtontutors.com/blog/going-steady-state-
with-markov-processes
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After completing matrix multiplication, we obtain the following equation:

0.1a− 0.6b = 0

Recall that by definition of a probability vector, a+ b = 1

We express this system of equations with the following augmented matrix:[
0.1 −0.6 0
1 1 1

]
Through row reduction, we obtain:[

1 0 6/7
0 1 1/7

]

Now, we see that our steady-state vector is xs =

[
a
b

]
=

[
6/7
1/7

]
So, as more days pass, the chance that you will go to the gym on some day

in the future approaches 6/7 while the chance that you won’t approaches 1/7.

1.4 Proof of critical Markov Chain theorems

We first introduce the Perron-Frobenius Theorem, which we will use to
prove another theorem, Theorem 1.2, that focuses on the existence and unique-
ness of steady state vectors of Markov chains with regular stochastic transition
matrices. We will then prove that with such transition matrices, the Markov
chain converges to the steady state vector as it approaches infinity.

Theorem 1.1 (Perron-Frobenius) For any strictly positive matrix A >
0 there exists λ0 > 0 and x0 > 0 such that

• Ax0 = λ0 ∗ x0;

• if λ ̸= λ0 is any other eigenvalue of A, then |λ| < λ0;

• λ0 has geometric and algebraic multiplicity 1, i.e. the dimension of
the 1-eigenspace is 1 and the number of times 1 appears as a root of
the characteristic polynomial is 1.

Corollary 1.1.1 The 1-eigenspace of a positive stochastic matrix is a line.

Corollary 1.1.2 The 1-eigenspace contains a vector with positive entries.

Corollary 1.1.3 All vectors approach the 1-eigenspace upon repeated multipli-
cation by A.

Corollary 1.1.4 If A is a regular matrix, then the conclusions of Theorem 1.1
hold also for A.
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Theorem 1.2 If P is an n × n regular stochastic matrix, then P has a
unique steady-state vector q. Further if x0 is any initial state and xk+1 =
Pxk for k = 0,1, 2, . . . , then the Markov chain xk converges to q as k
approaches infinity.

Let us show that every regular stochastic matrix has a steady-state vector, and
that it is unique.

Proof of Existence and Uniqueness of Steady State Vector:
If P is stochastic, then each row of PT sums to 1. Multiplying PT by the n× 1
column vector of 1’s returns the sums of each row, i.e. the n x 1 column vector
of 1’s.

PT ∗ 1 = 1 ∗ 1

Therefore, 1 is an eigenvalue of PT , and the eigenvector is a column vector of
1’s. Note that P and PT have the same eigenvalues as they have the same
characteristic equations:

det(P − λIn) = det((P − λIn)
T ) = det(PT − λIn).

Therefore, 1 is also an eigenvalue of P , so there exists a corresponding eigen-
vector q such that

P ∗ q = 1 ∗ q

By Corollary 1.1.4, P has a unique largest eigenvalue λ ∈ R. Since the
geometric multiplicity of λ (1) is 1, q is a unique stochastic vector such that
P ∗ q = q ■.

Lemma 1.3 (Jordan Normal Form) Let A ∈ Cn×n be any matrix with
eigenvalues λ1, · · · , λl ∈ C, l ≤ n. Then there exists an invertible matrix U ∈
Cn×n such that

UAU−1 =


J1 0 · · · 0

0 J2
. . .

...
...

. . .
. . . 0

0 · · · 0 Jr


where each Ji is a ki × ki Jordan block associated to some eigenvalue λ of A:

Ji =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


The total number of blocks associated to a given eigenvalue λ corresponds to λ’s
geometric multiplicity, and their total dimension Σiki to λ’s algebraic multiplic-
ity.
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Proof of Convergence of Regular Markov Chains:
Let us consider the Jordan normal form of transition matrix P , where P is a
regular stochastic matrix. For simplicity, we assume that all eigenvalues of P ,
λ1, · · · , λn are real and distinct. Then, the rows of U may be taken to be the
right eigenvectors of P , and the Jordan normal form reduces to the following
eigenvalue decomposition:

UPU−1 = Λ =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn


Note that the columns of U−1 = V are the left eigenvectors corresponding to
eigenvalues λ1, · · · , λn. As proven above, P has a unique largest eigenvalue
λ = 1, and other eigenvalues may be ordered so that 1 > |λ2| ≤ · · · ≤ |λl|. The
unique right eigenvector associated with λ1 = 1 is the steady state vector q,
and the corresponding unique left eigenvector is 1. Normalizing the first row of
V = U−1,

Λ =


1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn


Thus, we have

P 2 = (V ΛU)2 = V Λ2U = V


1 0 · · · 0

0 λ2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 λ2

n

U

and in general

P k = V ΛkU = V


1 0 · · · 0

0 λk
2

. . .
...

...
. . .

. . . 0
0 · · · 0 λk

n

U
k→∞−−−−→ V


1 0 · · · 0

0 0
. . .

...
...

. . .
. . . 0

0 · · · 0 0

U =


v11u1

v12u1

...
v1nu1

 =


q
q
...
q



Therefore, the Markov chain of P converges to q as k approaches infinity. ■

2 Application to Recidivism

Lin, Muser, Munsell, Benson, Menzin (2014) used a Markov state transition
model to estimate the number of schizophrenia patients recently released from
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jail who would experience psychiatric relapse and/or arrest and reincarcera-
tion over a 3-year period. A Markov model was chosen for their analysis given
that modeling criminal justice costs and outcomes requires following individ-
uals and evaluating their transitions between discrete states: incarceration, in
the community, etc. In their model, three healths states were considered: (in
community, on therapy), (in community, off therapy), (incarcerated) [1].

We followed a similar model framework as Lin et al. (2014), but focusing not
on economic costs of psychiatric treatment and rather on predicting recidivism
numbers of inmates with regards to the mental health status at release.

3 Analysis of Florida Dataset

3.1 Dataset

We got the following data (Figure 1) from the Florida Department of Correc-
tions 2020-2021 Recidivism Report [5]. We used this data to create a Markov
chain model to study future recidivism rates and how changing mental health
treatment can affect them.

Figure 1: Recidivism Rates Table (2020-21, Florida)
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3.2 Markov Model Schematic

In order to construct a transition matrix, we first need to determine the states a
person in the population could be in. Assuming the base population comprises
of individuals released from incarceration, we have the following schematic to
represent the transition of states from this point onward for them:

Figure 2: Recidivism Rates Table Pt. 2 (2020-21, Florida)

Thus, there are four different states that a person can be in: in jail requiring
mental health treatment, in jail without requiring mental health treatment, in
the community requiring mental health treatment, and lastly in the community
without requiring mental health treatment.

In order to form our transition matrix P for this situation, we must find
four column vectors that represent the likelihood that a person will be in each
of these four stages at the next step given that they are in a specific one of these
stages currently.

3.2.1 Model Assumptions

In order to construct the transition matrix P we incorporated information from
the Florida data set as well as other research. Van den Berg et al. (2016) studied
the changes in depression and stress of inmates after release from tobacco-free
prisons in the United States. They found that although most inmates improved
after prison, 30.8% had a worsening in levels of depression between baseline
and the three-week follow-up. 29.8% had a worsening in levels of stress after
release than during incarceration [2]. Therefore, we assumed a 30% chance that
a member of our recently released population would develop a mental illness in
the community.
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We assumed that the release rate between those who needed ongoing mental
health treatment and those who did not would be the same, and we calculated
this shared release rate through looking at how many inmates were released in
2017 and then dividing that value by how many were admitted that year in
addition to the initial population of inmates in Florida in 2017, before arriving
at a 24.4% release rate [7]. For transitioning from the community to jail, we used
a weighted average between males and females of the recidivism rates provided
in the data table, finding a 22.46% recidivism rate for those who do not require
mental health treatment versus a 28.51% rate for those who do. [5]

Lastly, we assumed that for those already in jail, their mental health status
would remain constant while they remain in jail, and we assumed that becoming
incarcerated would not eliminate the need for mental health treatment for some-
one in the community who required treatment immediately prior to becoming
incarcerated.

3.2.2 Using Data to Form Transition Matrix

Through this we obtained the following completed transition matrix for our
Markov chain.

• J, MH = In jail, requiring mental health treatment

• J, NMH = In jail, not requiring mental health treatment

• C, MH = In the community, requiring mental health treatment

• C, NMH = In the community, not requiring mental health treatment

P =

J, MH J, NMH C, MH C, NMH
.756 0 .285 .101 J, MH

0 .756 0 .123 J, NMH

.244 0 .715(1−m) .233 C, MH

0 .244 .715(m) .543 C, NMH

Note: m represents the percentage of released inmates who require mental health
treatment in their current state, but in 3 years no longer require treatment. We
set this as a variable in order to measure the effects of increased treatment post-
release on the mental health status of the inmates concerned.

Initial Population (x0): In FY 2017-2018, 20,719 males and 2,026 females
were released who did not require on-going treatment, totalling 22,745 (see
Figure 2). A total of 4568 inmates required on-going treatment at release. For
those returning to jail, 5,358 did not require on-going treatment and 1,215 did
require on-going treatment.

pop0 =


1, 215
5, 358
4, 568
22, 745


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3.3 Deriving Steady State Vectors of Markov Chain

Case 1: m = 0.40 In other words, the effectiveness of continued mental health
treatment (to the point where treatment is no longer required) for inmates re-
leased to the community is 40%.

Let us define our steady-state vector, denoted as xs, as the vector that
satisfies the following equation:

xs = P0.4 ∗ xs.

Moving things around, this is equivalent to (I − P0.4)xs = 0. Let us further

define xs as being equal to


a
b
c
d

.

Thus, (I − P0.4)xs =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


.756 0 .285 .101
0 .756 0 .123

.244 0 .429 .233
0 .244 .286 .543


xs

=


.244 0 −.285 −.101
0 .244 0 −.123

−.244 0 .571 −.233
0 −.244 −.286 .457



a
b
c
d

 = 0

rref(I − P0.4) =


1 0 0 −1.778
0 1 0 −.504
0 0 1 −1.168
0 0 0 0


Using this, we determine a = 1.778d, b = .504d, and c = 1.168d. Recall as well
that by definition of a probability vector, a+ b+ c+ d = 1. We can substitute
these values into this last equation to obtain:

1.778d+ .504d+ 1.168d+ d = 4.45d = 1

So, d = .225, and consequently, a = .400, b = .113, and c = .262. The steady
state vector of transition matrix P0.4 is

xs =


0.400
0.113
0.262
0.225

 .

Multiplying by our initial population count of 33,886, we get

pops =


13555
3829
8878
7624


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Case 2: m = 0.60 In other words, the effectiveness of continued mental
health treatment (to the point where treatment is no longer required) for inmates
released to the community is 60%.

Similar to Case 1, we must find the steady state vector xs such that (I −
P )xs = 0.

Following the same process as Case 1,

rref(I − P0.6) =


1 0 0 −1.323
0 1 0 −.504
0 0 1 −.779
0 0 0 0


So, after creating a system of equations and solving that system, we obtain

the following xs =


0.367
0.140
0.216
0.277

. Thus, pops =

12436
4744
7319
9386


3.4 Predicting Recidivism Numbers

We can also use this Markov Chain model to predict numbers in the short-term.
For example, assuming m = 0.4 for calculation purposes, we can find pop1, 0.4,
or the distribution of the population across the four states in 2018, through
matrix multiplication.

pop1, 0.4 = P0.4(pop0) =


4, 518
6, 848
7, 556
14, 964

 .

In 10 years, the population will look like

pop10, 0.4 = P 10
0.4(pop0) =


12, 617
4, 674
8, 564
8, 030

 .

Likewise, for m = 0.6, the prison and community population will look like

pop10, 0.6 = P 10
0.6(pop0) =


11, 753
5, 358
7, 115
9, 659

 .
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4 Implications of Analysis

4.1 Discussion of Results

In the first case, where the effectiveness of mental health treatment is m = 40%,
we found that the chance of inmates entering the community not requiring
mental health treatment is lower than the case where effectiveness is m = 60%
Out of our initial population of around 34,000, approximately 2,000 more of
them were in the community long-term without needing ongoing mental health
treatment, which is the ideal state out of the four. Especially when scaled up
beyond the state of Florida, these findings show that increasing the effectiveness
of mental health treatments in the community can have significant positive
impacts.

4.2 Modifications to Markov chain models to improve ac-
curacy

We would like to consider a more robust model that takes into account more
factors that affect recidivism, such as age at discharge, geographic environment
(e.g. county within a state), and criminal history (repeat vs. first-time offend-
ers). Also, due to lack of available evidence, some of the percentages in our
transition matrix are estimates based on related literature.

5 Conclusion

In this project, we developed a Markov chain model to analyze recidivism rates
of inmates in Florida with regards to their mental health status. We found
that effective mental health treatments for inmates can slightly improve overall
recidivism rates in the state of Florida and can significantly improve overall
mental health status for released inmates in the community.

We chose to study an application of Markov chains as it allowed us to connect
our theoretical understanding of eigenvectors and eigenvalues to a concrete, real-
world representation. Through working on this project, we learned that there
needs to be more research and data collected on the mental health statuses of
inmates: how many develop symptoms while incarcerated, how their mental
health worsens post-release, and how recidivism factors in. Ultimately, we hope
to see more research analyzing the mental health of inmates during and after
incarceration in order for inmates to have a healthier transition back into the
community and to prevent recidivism.
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